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Abstract-T’he entropy generation due to burning particles in a gaseous stream is considered and the 
contributions to it compared. A second law analysis is unde~aken in order to minimize the entropy 
generation and, therefore, the lost available work. The optimum flow conditions from this thermo- 
dynamically advantageous perspective are determined for a burning droplet at low Reynolds number and 
an optimum transfer number obtained. The transfer number so obtained depends directly on the square 
of the relative velocity, and inversely on the net enthalpy rise due to burning and the ratio of ambient to 
flame temperature. In realistic Rows, where the transfer number and net heat release are fixed, these 
quantities are related to the relative velocity and ambient to flame temperature ratio in order to operate 
at optimum conditions. The square of the relative velocity in such flows is a small fraction of the net heat 
release so that, to operate at optimum thermodynamic conditions, it is determined that the droplet Reynolds 
number must be large suggesting a large droplet size and low gas viscosity. Circumstances pertaining to 
engineering practice are also considered and it is concluded that within constraints practice is consistent 

with the implications of the second law analysis. 

1. INTRODUCTION 

THE USE of the second law of thermodynamics has 
found extensive application in problems involving 
heat transfer. Bejan [l-3] presents the methodology 
behind this approach as it is applied to heat and fluid 
flow, and reviews the literature in the area. San el al. 
[4], and Poulikakos and Johnson [S] present analyses 
for forced convection phenomena when irreversi- 
bilities due to mass transfer are important compared 
with those due to heat transfer and fluid friction. The 
key to analyses conducted by using the second law lies 
in evaluating the degree of irreversibility in engin- 
eering systems [6, 71 so as to determine the available 
work. The various constituents of the irreversibility 
(e.g. from heat and mass transfer, fluid friction, drag, 
and heat release) are then examined to understand 
their interrelationship and the mechanism of entropy 
generation in the flow. An optimum operating 
condition corresponding to a minimum entropy 
generation can be specified upon comparing these 
contributions. 

Work, that would otherwise have been available, 
but is lost due to entropy production f2], termed as 
lost available work, is related to the entropy gen- 
eration and a reference temperature TO by the 
relationship 

W lost. 0 = To@. 

When the entropy generation rate is minimized, so is 
the lost available work, and maximum work is avail- 
able per unit mass of the flow rate. From a practical 
and operational standpoint the implication is that 
work done on the flow is minimized and that extracted 
from it maximized. 

Despite the attention afforded to entropy gen- 

eration in convective flows [2,4,5] reacting flows have 
not yet been extensively scrutinized [8,9]. Arpdci and 
Selamet [9] examine the entropy generation in pre- 
mixed flames stabilized above a flat flame burner and 
relate the tangency condition. i.e. the minimum 
quench distance, to an extreme of entropy generation 
which they determine to be inversely proportional to 
the Peclet number. 

In this study the entropy generation equation appli- 
cable to chemically reacting flows is described and 
attention paid to multiphase combustion by con- 
sidering the burning of particles in a fluid stream. This 
situation is analogous to that of a burning cloud of 
coal dust or liquid spray in a flow. The combustion 
of droplets in a fluid stream is considered, and use 
made of relationships established previously [lO-121 
that describe droplet burning, in order to examine 
the various contributions to the irreversibility. These 
contributions are compared in order to optimize the 
Row conditions by minimizing the entropy generation. 
Though the method is applicable to the combustion 
of both single droplets and sprays, for the purpose of 
exposition single droplets burning at smah Reynolds 
numbers are considered. 

For burning droplets, in order to minimize the 
entropy generation, a trade-off must be considered 
between the competing irrevevsibilities due to the mass 
loss from the droplet (which dictates the net enthalpy 
flux into the flow) and drag. While an increase in the 
transfer number increases the mass loss, it decreases 
the drag due to a blowing effect, and it is possible to 
determine a state where the decrease in drag optimally 
offsets the increase in heat transfer. At this point both 
the entropy generation and lost available work are 
minimized. 
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NOMENCLATURE 

A stream tube area @;<>\LU lost available work 
a droplet radius ,B reaction rate 

B&f transfer number s spatial coordinate 
c concentration of the products v,, fuel mass fraction at the particle surface. 

c,, coefficient of drag 

F,, drag force Greek symbols 

s entropy generation ralc X chemical potential 

8”’ entropy generation rate per unit Ah heat of reaction 
volume Y dynamic viscosity 

N extensive enthalpy P density 
h intensive enthaipy 4 viscous dissipatjon 
k thermal conductivity R defined in equation (15). 
L heat transfer to the particle (e.g. latent 

heat of vaporization) Subscripts 
n? mass flow rate f subscript on the temperature associated 
N mole number with the particle (e.g. flame 

N, entropy generation number temperature) 

; 

pressure i ith species 
heat release from the particle .i3 k repeated indices 

4 heat flux in conditions at the stream tube inlet 
R universal gas constant 0 subscript on the reference temperature 
RP Reynolds number opt pertaining to optimum conditions 
S extensive entropy out conditions at the stream tube outlet 
s intensive entropy P conditions pertaining to the particle 
S directional entropy flux x ambient conditions. 
Sh Sherwood number 
T temperature Superscripts 

i;, 
velocity 0 reference state 
volume .-. indicates that the property is calculated 

v, relative velocity on a per mole basis. 

2. ENTROPY GENERATING IN CHEMICALLY In developing equation (4) from equations (l)--(3) it 
REACTING FLOWS is noted that by definition the local entropy flux is 

In a fluid Aow in which heat, mass transfer and 
chemical reaction occurs, the conservation of energy 
is expressed as 

Use of the Gibbs relation 

and the equation of change for the entropy of a fluid 

pg= (V*s)+,lj 

enables description of the local rdte of entropy gen- 
eration 12-4, 8, 9, 13-l 51 in the form 

.Q”’ = :Ii~~l” + ;[pO+(-w,~b 

vohtme, depicted schematically in Fig. 1, the heat and 
mass transfer and fluid friction associated with the 
flow of a gas around a particle are considered. The 
equations for the conservation of mass, energy and 

(4) entropy under steady-state conditions are expressed 
as 

equal to the local energy flux divided by the local 
temperature [15], i.e. 

For ease of expression, the expressions represented 
by equations (1) and (4) assume a one-step overall 
reaction for the combustion of fuel; in the event of 
simpIicity not being desired the term (-Ah)+ is easily 
replaced by an appropriate representation of the heat 
release. 

For a multiphase flow, such as that involving the 
flow of a gaseous stream over a burning droplet, the 
control volume approach [2, S] is used, and applied 
to an adiabatic stream tube, in order to develop an 
expression consistent with equation (4). In the control 
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FIG. 1. Schematic diagram of the control volume with exter- 
nal flow over a burning particle. 

Qthz, Ltiiz, 
tiZin,P,, + -- ~-. - T +ti,s, = tijl,“tS,,t -4. 

rr 
(5) 

1 

The enthalpy rise within the stream tube has two 
components: one due to products issuing from the 
burning particle (mph,), and the other due to the net 
heat release m,(Q-L) from the particle. Similarly, 
contributions to the entropy rise in the stream tube 
arise from the products (m,s,), the net heat release, 
and from the entropy generated by irreversibilities in 
the flow 4. It is assumed that the heat release occurs 
at a characteristic temperature T, which, considering 
the range of temperatures around a burning particle, 
is an average flow temperature. For the purpose of 
this study T: is set equal to a flame temperature 
demonstrative of the combustion phenomena so that, 
for inclusion in the entropy conservation equation, 
the net heat release is assigned this temperature. The 
viscous dissipation appearing in equations (5) is 
an average term that is assumed to be uniformly dis- 
tributed over the entire stream tube volume V. 

The canonical relation 

dH= TdS+VdP+ictidNi 

applied to the Bow field under consideration assumes 
the following form : 

&don, -@nhin = rm[hutsout -fjtinJinl 

+ ;f IP*,t - Pi”1 +ap,.x. wp.o”t - ycJ (6) I 
The enthalpy and entropy rises in the stream tube are 
included in the incremental terms in equation (6), one 
appearing on the left-hand side, and the’other being 
the first contribution to the right-hand side of that 
expression. 

The entropy of the species issuing from the particle 
is related to its enthalpy and chemical potential by the 
relation 1161 

(7) 

the particle can be expressed in terms of the mass loss 
from the particle and the molecular weight of the 
species entering the flow as 

N p.out - Np.in = 2. 
P 

When a mixture composed of several species emanates 
from the particle, e.g. the products due to a burning 
droplet or coal particle, equations (6)-(S) are appli- 
cable by considering the mean of bulk properties of 
the product mixture. 

If the nonuniformity of the flow is such that the 
area of the streatn tube is almost constant from entry 
to exit, the force &, required to maintain the control 
volume stationary is 

FD = &,(Pi” - PO”,) (9) 

when the fluid velocity is equal to the relative velocity 
of the particle. If the mass loss from the particle is 
small compared with the gaseous flow into the stream 
tube, the area of the tube can be expressed as [2] 

By use of equations (.5)-( 10) an expression describ- 
ing the entropy generation in the flow is derived, 
namely, 

Equation (11) is the general equation for the entropy 
generation in an adiabatic stream tube caused by the 
flow of gas over a particle transferring heat and mass 
to the flow, and by fluid friction in the tube. Though 
the term containing the chemical potentials can be 
further simplified [5] this is unnecessary for the appli- 
cations that are now considered. It is noted that were 
the stream tube nonadiabatic a term involving heat 
transfer at the boundary, and assigned to a boundary 
temperature, would appear on the right-hand side of 
equation (11). 

3. ENTROPY GENERATIGN DUE TO DROPLET 

COMBUSTION 

Several correlations, that are of roughly similar 
form, express the mass loss from a burning droplet 
[lo, 12, 17-191 in terms of the Sherwood number Sh 
and a transfer number B,. For sake of illustration a 
relation from refs. [lo, 121 is chosen that describes the 
mass loss and Sherwood number in the form 

~~h=21n(1+B,)+(1+(l-t~e)“3)f,(~e)-2 _____~__ 
B.44 ( , +B,)o.7-- . 

The production of species due to mass transfer from (12) 
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The relationships described by equations (12) 
assume a Schmidt number of unity. If fuel vapor is 
absent in the ambient flow the transfer number is 
related only to the concentration of fuel vapor at the 
droplet surface [II], i.e. 

(13) 

The fuel vapor concentration at the droplet surface is 
in turn related to the enthalpy of the fuel, net heat 
release due to its burning, the latent heat of vapor- 
ization and conductivity of the liquid fuel, and 
the ambient temper-ature and oxidizer concent~dtion 
[lO-121. 

Considering the droplet to be a sphere the force on 
the droplet is described in terms of a drag coefficient 
where []2] 

&(Re) = (1 +O.~)RP~,~~, Re 2 1 

j’;(Re) = 1, Re < 1. (14) 

It is instructive to note that equations (12) and (14) 
indicate a trade-offin terms of the transfer number in 
the context of equation (1 I]. On the one hand an 
increase in the transfer number decreases drag, a result 
which is beneficial in minimizing the entropy gener- 
ation, but on the other it increases the mass loss from 
the droplet and thus the irreversibilities associated 
with the heat and mass transfer. Clearly, the choice of 
a particular correlation is not of critical significance 
since the behavior relating the transfer number to 
the drag and mass loss should prevai] in all such 
expressions, and so it is reasonable to state that, from 
a thermodynamic standpoint, an investigation to 
determine an optimum transfer number at which the 
entropy generation is minimized can be conducted. In 
fact, perusal of equation (]I j, in light of equations 
(12) and (14). elucidates that the only apparent term 
that can be traded-off in order to minimize the entropy 
generation is the transfer number. Although the trans- 
fer number is a thermodynamic property it can be 
altered in several ways for a particular fuel. A change 
in either the ambient temperature, liquid fuel tem- 
perature, or ambient oxidizer mass fraction will mod- 
ify the transfer number ; obviously. there are limits in 
which such changes can be made. 

Since the analysis that is developed is uniformly 
applicable, for the purpose of exposition. and in order 
to facilitate the study, the low Reynolds number cor- 
reIations of equations (12) and (14) are assumed to 
apply to droplets moving with any Reynolds numbers. 

An optimum transfer that minimizes the entropy 
generation in the flow is obtained in a straightforward 
manner at a given Reynolds number by setting 

so that 

i 
2(] +&LopJo 

where 

For small Reynolds numbers a description of the opti- 
mum transfer number is obtained in the form 

52 5 
B M,opt = 0 2 

-1. 

From equation (16) it is observed that the o.ptimum 
transfer number obtained for small Reynolds num- 
bers is independent of the transport properties of the 
droplet and its ambient, and of the droplet size. The 
optimum transfer number increases with increasing 
relative velocity since the drag is reduced, diminishes 
with an increase in the net enthalpy rise due to the 
burning droplet, and increases with a reduction in 
the ratio of the ambient temperature to the flame 
temperature. Sufficient care must be used while apply- 
ing equation (16) so as to mainrain the right-hand side 
of the equation positive. 

In a real system there is little control over the trans- 
fer number, and the heat release and latent heat of 
vaporization for a given fuel. The specific enthalpy 
associated with the products is fixed by the choice of 
liquid fuel and the stoichiometry related to the oxi- 
dizer content in the gas. Equation (]6), in this case, 
describes an optimum relative velocity that minimizes 
the lost available work for a given gas flow rate and 
temperature ratio T,/T( while the other parameters 
are maintained constant; the equation assumes the 
form 

Equations (16) and (17) are applicable to the com- 
bustion of single droplets at low Reynolds numbers 
and to sprays that have associated with them a small 
mean Reynolds number. Tn the case of sprays, cqua- 
tion (16) assumes that the droplet loading is dilute so 
that the entropy rise due to mixing of the products in 
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the flow is negligible and that the ambient temperature 
remains basically unchanged due to heat release from 
the spray. The stream tube, in this case, is assumed to 
contain an ensemble of droplets which are either part 
or whole of the entire spray, which enables separate 
analysis of the different regimes of a spray. 

To the above analysis the entropy generation due 
to mixing in the stream tube may be added by use of 
appropriate empirical relationships. For an ideal gas 
the chemical potentials are related to the con- 
centrations of a chemical species by the expressions 
[S, 16,201 

aP = ai+ RTln (P/P”) 

P= CRT 

i-@+T$--TI?In PC (18) 

and a simplified expression for the entropy rise due to 
mixing (cf. equation (I 1)) is developed after assuming 
that the specific heat of the products is constant over 
a wide range of temperature, so that 

(19) 

If the products and reactants are assumed to have 
similar properties (such as those of nitrogen, for 
instance) then the concentration of the products near 
the particle surface may be assumed to equai that in 
the flow, i.e. C, = Cr. In that case the second term on 
the right-hand side of equation (19) is zero allowing 
an estimate for the entropy gain due to mixing to 
be made on the basis of the mixture thermodynamic 
properties and the ambient to flame temperature ratio. 
Assuming the products to have the same specific heat 
as nitrogen (taken as 0.2911 cal g- ’ at 1300 K), the 
same molecular weight (28 g mall ‘), and the tem- 
perature ratio (TJ’Tr) to be equal to 3OOj1800, a 
numerical value of approximately 0.4 cal g- ’ K-- ’ is 
determined for the left-hand side of equation (19). If 
the fuel has a typical heat release of about 3 kcal gg ’ 
clearly the entropy rise due to mixing is small com- 
pared with that due to the heat release irreversi- 
bility, i.e. Q(ljr, - l/r,). Though it is not necessary 
to drop this term it can be eliminated following the 
reasoning above, which is done in the subsequent 
analysis for the sake of brevity and convenient 
formulation. 

The high Reynolds number correlations of equa- 
tions (12) and (14) can be applied to equation (11) 
to obtain an implicit expression relating the transfer 
number at optimum conditions (i.e. when the entropy 
generation is minimized) and the Reynolds number 

cl 

a 

FIG. 2. The variation of the parameter LZ with the transfer 
number B, for constant values of the Reynolds number in 
order to minimize the entropy generation. The dashed line 
uses the low Reynolds number correlations and the solid 

ones the high Reynolds number correlations. 

to the quantity R. In Fig. 2 results are presented that 
show the variation of IZ with BM,opt for different Reyn- 
olds numbers. The arrow marks the condition when 
B M,op! equals 10, a value expected for the burning of 
many hydrocarbon fuels at steady-state conditions. 
The high Reynolds number correlations were applied 
for Re 2 I and the low Reynolds number correlations 
for Re < I. The competing irreversibilities defme two 
regions of optimum operation: one, in which for a 
given BU,,ptr the quantity 0 decreases as the Reynolds 
number is changed from a value of a tenth to 300 and 
another where it first decreases and then increases as 
the Reynolds number is changed over the same range. 
For a given fuel, when the stoichiometry, ambient 
temperature and initial fuel temperature are fixed, the 
only variable in the term fl is the relative velocity, the 
results presented in Fig. 2 show that if the optimum 
transfer number equals 10, the square of the relative 
velocity at optimum conditions decreases by a factor 
almost equal to 2 when the Reynolds number is 
changed from a tenth to 300. This is better explained 
by considering a dimensionless entropy generation 
number IV, defined as 

Use of equations (1 I), (12) and (14) yields the fol- 
lowing relation for N, 

N, = 21n(l+f?M)+[fl+(1+Re)‘~3]Reo77-2f 

B‘W 
x (1 +B$$)*.’ + 

3~~(l+0.2R~“-6~)~l +&)-‘.’ 

(20) 

Upon examining equation (20) it is c!ear that in 
order-to maintain the same value of the entropy gen- 
eration number, at a fixed transfer number, the quan- 
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tity R must decrease as the Reynolds number is 
increased. For fixed values of Q and the Reynolds 
number an expression similar to that of equation (I 5) 
can be obtained and an optimum value of the entropy 
g~~~erffti~~z )~u~~lb~r obtained. In Fig. 3 the change in 

N, is presented for two cases, i.e. for the quantity R 

possessing values of 3 and 2.5 with the droplet Reyn- 
olds number kept at IO. For both casts it is seen that 

N, has a minimum value, as defined by equation (20), 

at an optimum transfer number. The value of B,,,,P, 
changes from approximately 5 to IO as R changes in 
magnitude from 2.5 to 3 as shown in Fig. 2. 

Application of the above analysis to realistic flows 

reveals some interesting itn~iicati~ns since the relative 
velocity is usually several orders of magnitude less 
than the heat release when calculated in comparable 

units (a net heat release of 3 kcal g.- ’ corresponds to 

a velocity squared of 12.5 x 10’ m2 s-‘1. This implies 
that the entropy generation number is always above 

its minimum value for the usual transfer numbers 

encountered unless the ratio (T,,/T,) is very small. 
Thus, as determined from Fig. 2, from a thermo- 

dynamic perspective these flows should operate at 
high droplet Reynolds numbers suggesting a large 
droplet size or a low kinematic viscosity in the gas 

phase. Some control over R may be obtained by vary- 
ing the temperature ratio between the ambient gas 

and the flame though significant design restrictions 

apply. 
This point is illustrated by conside~ng the entropy 

generation number defined by equation (20) and mini- 
mizing it with respect to the Reynolds number when 
Q and the transfer number are fixed. The optimum 

Reynolds number to obtain the minimum entropy 

generation number N,,,,,, for these conditions is deter- 
mined by the solution to the following equation : 

FIG. 3. The entropy generation number N, plotted as a 
function of the transfer number B, showing a minimum 
corresponding to the position of the optimum transfer num- 
ber for that flow. The Reynolds number has a value of 10 

and the two cases correspond to r;k = 2.5 and 3. 
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FIG. 4. The change in the optimum Reynolds number that 
minimizes the entropy generation number when the parameter 

R and transfer number Bn* are fixed. 

In Fig. 4 the variation of the optimum Reynolds 
number for a fixed right-hand side of equation (20) is 

presented. The results show that if either Q or the 
transfer number becomes smaller in magnitude the 
optimum Reynolds number which minimizes the 

entropy sgemzrntion number increases, supporting our 
earlier inference. Examination of Fig. 4 shows that if, 

for instance, the Reynolds number has a value equal 
to 10, N, is minimized when the right-hand side of 
equation (20) has a value of about 0.25. In the context 
of Fig. 2 the implication is that while on the curve 
corresponding to a constant Reynolds number of 10 
there is a unique operating point defining N,,r,,,, where 
the combination of 0 and Bnn prescribed by the right- 
hand side of equation (20) equals 0.25. 

High Reynolds numbers also occur if the relative 
velocity of the droplets is high which, moreover, 
enhances gas phase mixing. However, as mentioned 
above. for reasonable relative velocities such as those 
expected in practice, the term Sz is small due to the 
large heat release and the other approach, that of 
increasing the drop size, should be considered for the 
reasons stated above. An increase in droplet size may 
be possible only in certain applications since other 
considerations, such as those involving residence time 
and combustor aerodynamics, may suggest selection 
of a smaller droplet size. In engineering practice the 
ambient temperature is maintained as high as the 
material and wall transfer allows 1211 which reduces 
the entropy generation as per the results of equation 
{I 1). In practice an increase in the drop transfer 
number is desirable and accomplished by raising the 
fuel temperature (within thermal stability limits) and 
the ambient flow temperature (given the above con- 
strains). Again, for given value of 0, as the results of 
Fig. 2 suggest, an increase in the transfer number 
implies an increase in the Reynolds number. 

4. CONCLUSIONS 

In this study a second law analysis is applied to 
reacting flows in order to minimize the entropy gcn- 
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eration and lost available work. Specifically, single 
droplet and spray combustion in a convective environ- 
ment is considered and the various contributions to 
the entropy generation are evaluated. It is determined 
that for droplets burning at low Reynolds numbers 
the entropy generation is minimized by comparing 
two terms: one, involving the mass loss from the 
droplet, and the other the drag force. An expression 
for an optimum transfer number is obtained which is 
observed to be directly proportional to the square of 
the relative velocity and inversely proportional to the 
heat release and the temperature difference between 
the droplet and its surrounding flow. The optimum 
operating condition when the entropy generation and 
lost available work are minimized is one that provides 
the maximum net energy output per unit mass of the 
flow at the combustor exit. 

In practical flows the transfer number is fixed and 
the square of relative velocity is much less than the 
net heat release, so that in order to optimize these 
flows from a second law standpoint and operational 
droplet Reynolds numbers should be large, suggesting 
a large droplet size and low gas viscosity. Though 
considerations other than those involving thermo- 
dynamics may encourage or inhibit application of the 
above results in specific circumstances, within con- 
straints enginering practice seems to be consistent with 
the results of a second law analysis. 
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ANALYSE DE LA SECONDE LOI POUR LA COMBUSTION DUNE GOUTTELETTE 
AVEC CONVECTION 

R&sum&La generation d’entropie due a la combustion de particules dans un Bcoulement gazeux est 
consider&e. Une analyse est conduite pour minimiser cette generation et, par suite, la perte d’bnergie utile. 
L’optimum des conditions d’tcoulement a partir de cette perspective thermodynamiquement avantageuse 
est determine pour une gouttelette en combustion a faible nombre de Reynolds et on obtient un nombre 
de transfert optimal. Ce nombre ainsi obtenu depend directement du quarre de la vitesse relative et 
inversement de l’blbvation nette d’enthalpie due a la combustion et au rapport des temperatures d’ambiance 
et de flamme. Le quarre de la vitesse relative est une faible fraction de la liberation de chaleur et, pour 
operer aux conditions thermod~~amiques optimales, le nombre de Reynolds de la gouttelette doit &tre 
grand, ce qui suggere une grosse tailie de goutte et une faible v&co&ii de gaz. On considire aussi des 
circonstances se rapportant a la pratique industrielle et on conclut que la pratique est coherente avec les 

implications de I’anaIyse de la seconde loi. 
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BETRACHTUNG DER KONVEKTIVEN TROPFCHENVERBRENNUNG IM HINBLICK 
AUF DEN ZWEITEN HAUPTSATZ 

Zusammenfassung-Es wird die Entropieerzeugung aufgrund der Verbrennung von Partikeln in einer 
Gasstromung betrachtet, und die einzelnen Beitrage werden miteinander verglichen. Mit Hilfe des zweiten 
Hauptsatzes wird eine Betrachtung angestellt, urn die Entropieerzeugung und damit die verlorene verfiig- 
bare Arbeit zu minimieren. Die aufgrund dieser thermodynamisch vorteilhaften Perspektive optimalen 
Stromungsbedingungen werden fur ein brennendes Tropfchen bei niedriger Reynolds-Zahl und eincr 
daraus resultierenden optimalen Ubertragungszahl bestimmt. Die so ermittelte Ubertragungszahl hingt 
direkt vom Quadrat der relativen Stromungsgeschwindigkeit ab und ist umgekehrt proportional zur Netto- 
Enthalpieerhohung aufgrund der Verbrennung und zum Verhlltnis von Umgebungs- und Flammtem- 
peratur. In realistischen Striimungen, bei denen die Ubertragungszahl und die Warmeabgabe vorgegebcn 
sind, stehen diese GrGRen in einer bestimmten Beziehung zu der relativen Striimungsgeschwindigkeit und 
dem Verhlhnis von Umgebungs- und Flammtemperatur, urn bei optimalen Bedingungen zu arbeiten. Das 
Quadrat der relativen Stromungsgeschwindigkeit in solchen Striimungen ist tin geringer Bruchteil der 
Nctto-Wirmeabgabe. Fur einen Betrieb bei optimalen thermodynamischen Bedingungen mug daher die 
Reynolds-Zahl der Triipfchen grog sein, wobei grol3e Tropfchen und eine geringe Gasviskositat vorge- 
schlagen werden. Im Hinblick auf die technische Praxis kann gefolgert werden, da8 diese innerhalb gewisser 

Grenzen mit den Ergebnissen aus den Betrachtungen nach dem zweiten Hauptsatz tibereinstimmt. 

AHAJIM3 BTOPOI-0 3AKOHA TEPMOJTHHAMHKM B 3AAA9AX KOHBEKTHBHOF0 
FOPEHHII KATiEJIb 

Anwrakmn-Mccnenyewn npoa3nonnno smponm 38 cseT ropmwix SacTBu B noToKe ra38. Ha ocrio- 
BaHHW MBHHMH3aWW npO"3BOWTBa 3HTpOnHH On~AeJUnOTCK OnTUMiUbHbIe yC,IOBH,, TegeHWR J,JD-l 

rOpmeii KaMH npEi HH3KOM 'GiCJle PeihiOJlbAGl B OnTUMaJlbHOe WICJIO nepeIiOCa,KOTOpOe npNM0 npO- 

nOpUHOHiUIbH0 KBaApaTy OTHOCHTeJlbHOiiCKOpOCTH B o6paTao npOnOpWiOEWIbH0 CyMMapHOMypOCTy 

3HTanbnlla,o6yC~oeneHHoMyropesuehl,B oTHolUeHmoTehfnepaTyp OKpymaEoqeiicpe~bl II nnahfemi. B 

OnTaM~bHbIXyCnOBBIxnpa~~bHbLwTe~eHHaXC~HKCBpOBBHH~MU~HC~OMne~HOca"CyMMapHbIM 

TeMOBbUeneHWeM 3TH BeJm'mHbl 3LBHCIIT OT OTHOC~TeJlbHOii CKOpOCTH B OTHOmeHWR TeMnepaTyp 

OKpyma~meiiCpe~linnaMeHH.KBaspaT OTHOCUTenbHOi%CKOpOCTWTZiKEiXTe'ieHHi"iCOCTaBJIleTMEiJIyIO 

WCTb CyMMapHOrO TeMOBbIAeJleHtiP, n03Totdy 0nTnManbnbIe Teph4onuHahwfecKae ycnonnr npu 
6OJIbwOM qacne Peihonb~canpe~nonara~TKpyn~b~Bpa3MepKanna~ MaJIyIO ea3KocTbrasa.IIpenno- 


